Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656747

RESUMO

During the urine storage phase, tonically contracting urethral musculature would have a higher energy consumption than bladder muscle that develops phasic contractions. However, ischaemic dysfunction is less prevalent in the urethra than in the bladder, suggesting that urethral vasculature has intrinsic properties ensuring an adequate blood supply. Diameter changes in rat or mouse urethral arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in arteriolar smooth muscle (SMCs) and endothelial cells were visualised using NG2- and parvalbumin-GCaMP6 mice, respectively. Fluorescence immunohistochemistry was used to visualise the perivascular innervation. In rat urethral arterioles, sympathetic vasoconstrictions were predominantly suppressed by α,ß-methylene ATP (10 µM) but not prazosin (1 µM). Tadalafil (100 nM), a PDE5 inhibitor, diminished the vasoconstrictions in a manner reversed by N-ω-propyl-l-arginine hydrochloride (l-NPA, 1 µM), a neuronal NO synthesis (nNOS) inhibitor. Vesicular acetylcholine transporter immunoreactive perivascular nerve fibres co-expressing nNOS were intertwined with tyrosine hydroxylase immunoreactive sympathetic nerve fibres. In phenylephrine (1 µM) pre-constricted rat or mouse urethral arterioles, nerve-evoked vasodilatations or transient SMC Ca2+ reductions were largely diminished by l-nitroarginine (l-NA, 10 µM), a broad-spectrum NOS inhibitor, but not by l-NPA. The CGRP receptor antagonist BIBN-4096 (1 µM) shortened the vasodilatory responses, while atropine (1 µM) abolished the l-NA-resistant transient vasodilatory responses. Nerve-evoked endothelial Ca2+ transients were abolished by atropine plus guanethidine (10 µM), indicating its neurotransmitter origin and absence of non-adrenergic non-cholinergic endothelial NO release. In urethral arterioles, NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions pre- and post-synaptically to restrict arteriolar contractility. KEY POINTS: Despite a higher energy consumption of the urethral musculature than the bladder detrusor muscle, ischaemic dysfunction of the urethra is less prevalent than that of the bladder. In the urethral arterioles, sympathetic vasoconstrictions are predominately mediated by ATP, not noradrenaline. NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions by its pre-synaptic inhibition of sympathetic transmission as well as post-synaptic arteriolar smooth muscle relaxation. Acetylcholine released from parasympathetic nerves contributes to endothelium-dependent, transient vasodilatations, while CGRP released from sensory nerves prolongs NO-mediated vasodilatations. PDE5 inhibitors could be beneficial to maintain and/or improve urethral blood supply and in turn the volume and contractility of urethral musculature.

2.
Cell Tissue Res ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587529

RESUMO

The epididymal duct exhibits spontaneous phasic contractions (SPCs) to store and transport sperm. Here, we explored molecular identification of pacemaker cells driving SPCs in the caudal epididymal duct and also investigated properties of pacemaker currents underlying SPCs focusing on ANO1 Ca2+-activated Cl- channels (CaCCs). Immunohistochemistry was performed to visualise the distribution of platelet-derived growth factor receptor α (PDGFRα)- or ANO1-positive cells in the rat caudal epididymal duct. Perforated whole-cell patch clamp technique was applied to enzymatically isolated epididymal cells, while SPCs were recorded with video edge-tracking technique. Immunohistochemistry revealed the distribution of α-smooth muscle actin (α-SMA)-positive cells co-expressing both PDGFRα and ANO1 in the innermost smooth muscle layer. Approximately one-third of isolated epididymis cells exhibited spontaneous transient inward currents (STICs) at the holding potential -60 mV. The reversal potential for STICs was close to the calculated chloride equivalent potential depending on intracellular Cl- concentrations. Ani9 (3 µM), the ANO1 specific inhibitor, decreased both amplitude and frequency of STICs, while cyclopiazonic acid (CPA, 30 µM), a sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor, abolished STICs. Ani9 (3 or 10 µM) reduced the frequency of SPCs without changing their amplitude. Thus, PDGFRα+, ANO1+ specialised smooth muscle cells (SMCs) appear to function as pacemaker cells to electrically drive epididymal SPCs by generating ANO1-dependnet STICs. STICs arising from spontaneous Ca2+ release from intracellular Ca2+ store and subsequent opening of ANO1 result in depolarisations that spread into adjacent SMCs where L-type voltage-dependent Ca2+ channels are activated to develop SPCs.

3.
J Physiol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607187

RESUMO

During emission, the first phase of ejaculation, smooth muscle in organs of the male reproductive tract (MRT) vigorously contract upon sympathetic nerve excitation to expel semen consisting of sperm and seminal plasma. During inter-ejaculation phases, the epididymis, seminal vesicles and prostate undergo spontaneous phasic contractions (SPCs), this transporting and maintaining the quality of sperm and seminal plasma. Recent studies have revealed platelet-derived growth factor receptor α-expressing (PDGFRα+) subepithelial interstitial cells in seminal vesicles subserve the role of pacemaker cells that electrically drive SPCs in this organ. PDGFRα+ smooth muscle cells in the epididymis also appear to function as pacemaker cells implicating PDGFRα as a potential signature molecule in MRT pacemaking. The dominant mechanism driving pacemaking in these organs is the cytosolic Ca2+ oscillator. This operates through entrainment of the release-refill cycle of Ca2+ stores, the released Ca2+ ions opening Ca2+-activated chloride channels, including in some cases ANO1 (TMEM16A), with the resultant pacemaker potential activating L-type voltage-dependent Ca2+ channels in the smooth muscle causing contraction (viz. SPCs). A second pacemaker mechanism, namely the membrane oscillator also has a role in specific cases. Further investigations into the commonality and heterogeneity of MRT pacemakers will open an avenue for understanding the pathogenesis of male infertility associated with deterioration of seminal plasma.

4.
Pharmacol Res Perspect ; 12(1): e1175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38339883

RESUMO

The aim of this study was to investigate the functional role of phosphodiesterase enzymes (PDE) in the isolated porcine ureter. Distal ureteral strips were mounted in organ baths and pre-contracted with 5-HT (100 µM). Upon generation of stable phasic contractions, PDE-4 and PDE-5 inhibitors were added cumulatively to separate tissues. PDE-4 inhibitors, such as rolipram (10 nM and greater) and roflumilast (100 nM and greater), resulted in significant attenuation of ureteral contractile responses, while a higher concentration of piclamilast (1 µM and greater) was required to induce a significant depressant effect. The attenuation effect by rolipram was abolished by SQ22536 (100 µM). PDE-5 inhibitors, such as sildenafil and tadalafil, were not nearly as effective and were only able to suppress the 5-HT-induced contractions at higher concentrations of 1 µM. Rolipram significantly enhanced the depressant effect of forskolin, while sodium nitroprusside-induced attenuation of contractile responses remained unchanged in the presence of tadalafil. In summary, our study demonstrates that PDE-4 inhibitors are effective in attenuating 5-HT-induced contractility in porcine distal ureteral tissues, while PDE-5 inhibitors are less effective. These findings suggest that PDE-4 inhibitors, such as rolipram, may hold promise as potential therapeutic agents for the treatment of ureteral disorders attributable to increased intra-ureteral pressure.


Assuntos
Inibidores da Fosfodiesterase 4 , Ureter , Animais , Suínos , Rolipram/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Isoenzimas , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Ureter/fisiologia , Serotonina/farmacologia , Tadalafila
5.
Pflugers Arch ; 476(5): 809-820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38421408

RESUMO

Parathyroid hormone-related protein (PTHrP) released from detrusor smooth muscle (DSM) cells upon bladder distension attenuates spontaneous phasic contractions (SPCs) in DSM and associated afferent firing to facilitate urine storage. Here, we investigate the mechanisms underlying PTHrP-induced inhibition of SPCs, focusing on large-conductance Ca2+-activated K+ channels (BK channels) that play a central role in stabilizing DSM excitability. Perforated patch-clamp techniques were applied to DSM cells of the rat bladder dispersed using collagenase. Isometric tension changes were recorded from DSM strips, while intracellular Ca2+ dynamics were visualized using Cal520 AM -loaded DSM bundles. DSM cells developed spontaneous transient outward potassium currents (STOCs) arising from the opening of BK channels. PTHrP (10 nM) increased the frequency of STOCs without affecting their amplitude at a holding potential of - 30 mV but not - 40 mV. PTHrP enlarged depolarization-induced, BK-mediated outward currents at membrane potentials positive to + 20 mV in a manner sensitive to iberiotoxin (100 nM), the BK channel blocker. The PTHrP-induced increases in BK currents were also prevented by inhibitors of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (CPA 10 µM), L-type voltage-dependent Ca2+ channel (LVDCC) (nifedipine 3 µM) or adenylyl cyclase (SQ22536 100 µM). PTHrP had no effect on depolarization-induced LVDCC currents. PTHrP suppressed and slowed SPCs in an iberiotoxin (100 nM)-sensitive manner. PTHrP also reduced the number of Ca2+ spikes during each burst of spontaneous Ca2+ transients. In conclusion, PTHrP accelerates STOCs discharge presumably by facilitating SR Ca2+ release which prematurely terminates Ca2+ transient bursts resulting in the attenuation of SPCs.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Contração Muscular , Músculo Liso , Proteína Relacionada ao Hormônio Paratireóideo , Bexiga Urinária , Animais , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiologia , Bexiga Urinária/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ratos Sprague-Dawley , Masculino , Cálcio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia
6.
Neurourol Urodyn ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902296

RESUMO

AIM: Bladder sensation is critical for coordinating voluntary micturition to maintain healthy bladder function. Sensations are initiated by the activation of sensory afferents that innervate throughout the bladder wall. However, the physiological complexity that underlies the initiation of bladder sensory signaling in health and disease remains poorly understood. This review summarises the latest knowledge of the mechanisms underlying the generation of bladder sensation and identifies key areas for future research. METHODS: Experts in bladder sensory signaling reviewed the literature on how the lower urinary tract contributes to bladder sensation and identified key research areas for discussion at the 10th International Consultation on Incontinence-Research Society. RESULTS: The importance of bladder sensory signals in maintaining healthy bladder function is well established. However, better therapeutic management of bladder disorders with exaggerated bladder sensation, including overactive bladder syndrome (OAB) and interstitial cystitis/bladder pain syndrome (IC/BPS) is limited by a lack of knowledge in a number of key research areas including; the contribution of different nerves (pudendal, pelvic, hypogastric) to filling sensations in health and disease; the relative contribution of stretch sensitive (muscular) and stretch-insensitive (mucosal) afferents to bladder sensation in health and disease; the direct and indirect contributions of the muscularis mucosae to bladder contraction and sensation; and the impact of manipulating urothelial release factors on bladder sensation. CONCLUSION: Disturbances in bladder sensory signaling can have severe consequences for bladder sensation and function including the development of OAB and IC/BPS. Advancing therapeutic treatments for OAB and IC/BPS requires a deeper understanding of the mechanisms underlying the generation of bladder sensation, and key areas for future research have been identified.

7.
Neurourol Urodyn ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902298

RESUMO

AIMS: The nitric oxide (NO•)/soluble guanylate cyclase/cyclic-GMP (cGMP) signaling pathway is ubiquitous and regulates several functions in physiological systems as diverse as the vascular, nervous, and renal systems. However, its roles in determining normal and abnormal lower urinary tract functions are unclear. The aim was to identify potential therapeutic targets associated with this pathway to manage lower urinary tract functional disorders. METHODS: This review summarizes a workshop held under the auspices of ICI-RS with a view to address these questions. RESULTS: Four areas were addressed: NO• signaling to regulate neurotransmitter release to detrusor smooth muscle; its potential dual roles in alleviating and exacerbating inflammatory pathways; its ability to act as an antifibrotic mediator; and the control by nitrergic nerves of lower urinary tract vascular dynamics and the contractile performance of muscular regions of the bladder wall. Central to much of the discussion was the role of the NO• receptor, soluble guanylate cyclase (sGC) in regulating the generation of the enzyme product, the second messenger cGMP. The redox state of sGC is crucial in determining its enzymic activity and the role of a class of novel agents, sGC activators, to optimize activity and to potentially alleviate the consequences of lower urinary tract disorders was highlighted. In addition, the consequences of a functional relationship between nitrergic and sympathetic nerves to regulate vascular dynamics was discussed. CONCLUSIONS: Several potential NO•-dependent drug targets in the lower urinary tract were identified that provide the basis for future research and translation to clinical trials.

8.
J Physiol ; 601(23): 5213-5240, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819628

RESUMO

In hollow visceral organs, capillary pericytes appear to drive spontaneous Ca2+ transients in the upstream arterioles. Here, mechanisms underlying the intercellular synchrony of pericyte Ca2+ transients were explored. Ca2+ dynamics in NG2 chondroitin sulphate proteoglycan (NG2)-expressing capillary pericytes were examined using rectal mucosa-submucosa preparations of NG2-GCaMP6 mice. Spontaneous Ca2+ transients arising from endoplasmic reticulum Ca2+ release were synchronously developed amongst capillary pericytes in a gap junction blocker (3 µM carbenoxolone)-sensitive manner and could spread into upstream vascular segments. Spontaneous Ca2+ transients were suppressed by the Ca2+ -activated Cl- channel (CaCC) blocker niflumic acid and their synchrony was diminished by a TMEM16A inhibitor (3 µM Ani9) in accordance with TMEM16A immunoreactivity in pericytes. In capillaries where cyclooxygenase (COX)-2 immunoreactivity was expressed in endothelium but not pericytes, non-selective COX inhibitors (1 µM indomethacin or 10 µM diclofenac) or COX-2 inhibitor (10 µM NS 398) disrupted the synchrony of spontaneous Ca2+ transients and raised the basal Ca2+ level. Subsequent prostaglandin I2 (PGI2 ; 100 nM) or the KATP channel opener levcromakalim restored the synchrony with a reduction in the Ca2+ level. PGI2 receptor antagonist (1 µM RO1138452) also disrupted the synchrony of spontaneous Ca2+ transients and increased the basal Ca2+ level. Subsequent levcromakalim restored the synchrony and reversed the Ca2+ rise. Thus, the synchrony of spontaneous Ca2+ transients in pericytes appears to be developed by the spread of spontaneous transient depolarisations arising from the opening of TMEM16A CaCCs. Endothelial PGI2 may play a role in maintaining the synchrony, presumably by stabilising the resting membrane potential in pericytes. KEY POINTS: Capillary pericytes in the rectal mucosa generate synchronous spontaneous Ca2+ transients that could spread into the upstream vascular segment. Spontaneous Ca2+ release from the endoplasmic reticulum (ER) triggers the opening of Ca2+ -activated Cl- channel TMEM16A and resultant depolarisations that spread amongst pericytes via gap junctions, establishing the synchrony of spontaneous Ca2+ transients in pericytes. Prostaglandin I2 (PGI2 ), which is constitutively produced by the endothelium depending on cyclooxygenase-2, appears to prevent premature ER Ca2+ releases in the pericytes allowing periodic, regenerative Ca2+ releases. Endothelial PGI2 may maintain the synchrony of pericyte activity by stabilising pericyte resting membrane potential by opening of KATP channels.


Assuntos
Capilares , Pericitos , Camundongos , Animais , Epoprostenol , Cromakalim , Canais de Cloreto , Trifosfato de Adenosina
9.
Pflugers Arch ; 475(11): 1315-1327, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37589734

RESUMO

In isolated segments of the rat proximal colon, the dopamine reuptake inhibitor GBR 12909 (GBR) causes a dilatation, while the D1-like receptor antagonist SCH 23390 (SCH) induces a tonic constriction, suggesting that neurally released dopamine tonically stimulates enteric inhibitory efferent neurons. Here, the targets of the enteric dopaminergic neurons were investigated. Cannulated segments of rat proximal colon were bathed in physiological salt solution and luminally perfused with 0.9% saline, while all drugs were applied to the bath. Spatio-temporal maps of colonic motility were constructed from video recordings of peristaltic contractions, and the maximum diameter was measured as an index of colonic contractility. GBR (1 µM)-induced dilatations of colonic segments were prevented by SCH (5 µM), L-nitro arginine (L-NA; 100 µM), a nitric oxide synthase inhibitor, or tetrodotoxin (0.6 µM). In contrast, constrictions induced by a higher concentration of SCH (20 µM) were unaffected by either L-NA or tetrodotoxin. The vasoactive intestinal peptide (VIP) receptor antagonist VIP10-28 (3 µM) or P2Y1 receptor antagonist MRS 2500 (1 µM) had no effect on either the GBR-induced dilatation or the SCH-induced constriction. In colonic segments that had been pretreated with 6-hydroxydopamine (100 µM, 3 h) to deplete enteric dopamine, GBR failed to increase the colonic diameter, while SCH was still capable of constricting colonic segments. Enteric dopaminergic neurons appear to project to nitrergic neurons to dilate the proximal colon by activating neuronal D1-like receptors. In addition, constitutively activated D1-like receptors expressed in cells yet to be determined may provide a tonic inhibition on colonic constrictions.


Assuntos
Dopamina , Neurônios , Ratos , Animais , Dopamina/farmacologia , Tetrodotoxina/farmacologia , Peristaltismo/fisiologia , Arginina/farmacologia , Colo , Motilidade Gastrointestinal
10.
Pflugers Arch ; 474(10): 1077-1090, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35907965

RESUMO

Parathyroid hormone-related protein (PTHrP) released from detrusor smooth muscle (DSM) as the bladder fills acts as an endogenous DSM relaxant to facilitate bladder storage function. Here, the effects of exogenous PTHrP on transient pressure rises (TPRs) in the bladder and associated afferent nerve activity during bladder filling were investigated. In anaesthetized rats, changes in the intravesical pressure were measured while the bladder was gradually filled with saline. Afferent nerve activity was simultaneously recorded from their centrally disconnected left pelvic nerves. In DSM strips, spontaneous and nerve-evoked contractions were isometrically recorded. The distribution of PTHrP receptors (PTHrPRs) in the bladder wall was also examined by fluorescence immunostaining. The bladders in which the contralateral pelvic nerve was also centrally disconnected developed nifedipine, an L-type voltage-dependent Ca2+ channel blocker-sensitive TPRs (< 3 mmHg). Intravenous administration of PTHrP suppressed these TPRs and associated bursts of afferent nerve activity. In the bladders with centrally connected contralateral pelvic nerves, atropine, a muscarinic receptor antagonist-sensitive large TPRs (> 3 mmHg) developed in the late filling phase. PTHrP diminished the large TPRs and corresponding surges of afferent nerve activity. In DSM strips, bath-applied PTHrP (10 nM) suppressed spontaneous phasic contractions, while less affecting nerve-evoked contractions. PTHrPRs were expressed in DSM cells but not in intramural nerve fibers. Thus, PTHrP appears to suppress bladder TPRs and associated afferent nerve activity even under the influence of low degree of parasympathetic neural input during storage phases. Endogenous PTHrP may indirectly attenuate afferent nerve activity by suppressing TPRs to facilitate urinary accommodation.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Bexiga Urinária , Animais , Derivados da Atropina/metabolismo , Derivados da Atropina/farmacologia , Contração Muscular/fisiologia , Nifedipino/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Ratos , Receptores Muscarínicos/metabolismo , Bexiga Urinária/metabolismo
11.
Cell Mol Gastroenterol Hepatol ; 14(2): 357-373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35569815

RESUMO

BACKGROUND & AIMS: Platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PIC) are interposed between enteric nerve fibers and smooth muscle cells (SMCs) in the tunica muscularis of the gastrointestinal tract. PIC have robust expression of small conductance Ca2+ activated K+ channels 3 (SK3 channels) and transduce inhibitory inputs from purinergic and sympathetic nerves in mouse and human colon. We investigated whether PIC also express pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, PAC1 (PAC1R), and are involved in mediating inhibitory regulation of colonic contractions by PACAP in mouse and human colons. METHODS: Gene expression analysis, Ca2+ imaging, and contractile experiments were performed on mouse colonic muscles. Ca2+ imaging, intracellular electrical recordings, and contractile experiments were performed on human colonic muscles. RESULTS: Adcyap1r1 (encoding PAC1R) is highly expressed in mouse PIC. Interstitial cells of Cajal (ICC) and SMCs expressed far lower levels of Adcyap1r. Vipr1 and Vipr2 were expressed at low levels in PIC, ICC, and SMCs. PACAP elicited Ca2+ transients in mouse PIC and inhibited spontaneous phasic contractions via SK channels. In human colonic muscles, PAC1R agonists elicited Ca2+ transients in PIC, hyperpolarized SMCs through SK channels and inhibited spontaneous phasic contractions. CONCLUSIONS: PIC of mouse and human colon utilize PAC1R-SK channel signal pathway to inhibit colonic contractions in response to PACAP. Effects of PACAP are in addition to the previously described purinergic and sympathetic inputs to PIC. Thus, PIC integrate inhibitory inputs from at least 3 neurotransmitters and utilize several types of receptors to activate SK channels and regulate colonic contractile behaviors.


Assuntos
Células Intersticiais de Cajal , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Colo/metabolismo , Humanos , Células Intersticiais de Cajal/metabolismo , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
12.
Eur J Pharmacol ; 920: 174834, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183536

RESUMO

The renal pelvis develops spontaneous phasic contractions (SPCs) that underlie pyeloureteric peristalsis. Increased urine flow into the renal pelvis mechanically stimulates the contractile machinery within the renal pelvis to facilitate the propagation of peristalsis. Here, the effects of mechanostimulation of the pelvicalyceal junction (PCJ), where SPCs originate from, on the properties of SPCs were investigated. Using the wire myograph, isometric tension changes in tubular preparations of mouse renal pelvis with calyces were circumferentially measured, while mechanostimuli were applied to the PCJ. Immunohistochemistry and intracellular Ca2+ imaging were performed, respectively, to investigate the distribution and functional roles of mechanosensitive TRPV4 channels in the renal pelvis. SPCs periodically originated from PCJ and propagated distally. Mechanostimulation of the PCJ reduced the frequency of SPCs by about 60%, while almost quadrupling their amplitude. Capsaicin (100 nM), an agonist of TRPV1 channels, or calcitonin gene-related peptide (CGRP) (30 nM) also slowed and enlarged SPCs. A prolonged pre-exposure to capsaicin or BIBN4096 (1 µM), a CGRP receptor antagonist, inhibited the mechanostimulation-induced reduction in the SPC frequency, but did not block the increase in SPC amplitude. TRPV4 immunoreactivity was expressed in both atypical (ASMCs) and typical smooth muscle cells (TSMCs). GSK1016790A (100 nM), a TRPV4 agonist, enlarged SPCs independently of TRPV1 or CGRP without increasing the amplitude of spontaneous Ca2+ transients in TSMCs. Thus, mechanostimulation of PCJ appears to activate TRPV1-expressing sensory nerves, releasing CGRP that predominantly reduce the SPC frequency. Activation of TRPV4 may be involved in the mechanosensitive enlargement of SPCs. (247 words).


Assuntos
Pelve Renal , Peristaltismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Capsaicina/farmacologia , Pelve Renal/fisiologia , Camundongos , Contração Muscular , Miócitos de Músculo Liso , Canais de Cátion TRPV
13.
J Physiol ; 600(7): 1703-1730, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081665

RESUMO

Smooth muscle cells (SMCs) of the guinea pig seminal vesicle (SV) develop spontaneous phasic contractions, Ca2+ flashes and electrical slow waves in a mucosa-dependent manner, and thus it was envisaged that pacemaker cells reside in the mucosa. Here, we aimed to identify the pacemaker cells in SV mucosa using intracellular microelectrode and fluorescence Ca2+ imaging techniques. Morphological characteristics of the mucosal pacemaker cells were also investigated using focused ion beam/scanning electron microscopy tomography and fluorescence immunohistochemistry. Two populations of mucosal cells developed spontaneous Ca2+ transients and electrical activity, namely basal epithelial cells (BECs) and subepithelial interstitial cells (SICs). Pancytokeratin-immunoreactive BECs were located on the apical side of the basement membrane (BM) and generated asynchronous, irregular spontaneous Ca2+ transients and spontaneous transient depolarisations (STDs). The spontaneous Ca2+ transients and STDs were not diminished by 10 µM nifedipine but abolished by 10 µM cyclopiazonic acid (CPA). Platelet-derived growth factor receptor α (PDGFRα)-immunoreactive SICs were distributed just beneath the basal side of the BM and developed synchronous Ca2+ oscillations and electrical slow waves, which were suppressed by 3 µM nifedipine and abolished by 10 µM CPA. In SV mucosal preparations in which some smooth muscle bundles remained attached, SICs and residual SMCs developed temporally correlated spontaneous Ca2+ transients. Neurobiotin injected into SICs spread not only to neighbouring SICs but also to neighbouring SMCs or vice versa. These results suggest that PDGFRα+ SICs electrotonically drive the spontaneous contractions of SV smooth muscle. KEY POINTS: In many visceral smooth muscle organs, spontaneous contractions are electrically driven by non-muscular pacemaker cells. In guinea pig seminal vesicles (SVs), as yet unidentified mucosal cells appear to drive neighbouring smooth muscle cells (SMCs). Two populations of spontaneously active cells are distributed in the SV mucosa. Basal epithelial cells (BECs) generate asynchronous, irregular spontaneous Ca2+ transients and spontaneous transient depolarisations (STDs). In contrast, subepithelial interstitial cells (SICs) develop synchronous Ca2+ oscillations and electrical slow waves. Pancytokeratin-immunoreactive (IR) BECs are located on the apical side of the basement membrane (BM), while platelet-derived growth factor receptor α (PDGFRα)-IR SICs are located on the basal side of the BM. Spontaneous Ca2+ transients in SICs are synchronised with those in SV SMCs. Dye-coupling between SICs and SMCs suggests that SICs act as pacemaker cells to drive the spontaneous contractions of SV smooth muscle.


Assuntos
Células Intersticiais de Cajal , Glândulas Seminais , Animais , Sinalização do Cálcio , Cobaias , Células Intersticiais de Cajal/fisiologia , Masculino , Contração Muscular , Músculo Liso/fisiologia , Miócitos de Músculo Liso/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Glândulas Seminais/fisiologia
14.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G617-G627, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643099

RESUMO

Glucagon-like peptide-1 (GLP-1), a well-known insulin secretagogue, is released from enteroendocrine L cells both luminally and basolaterally to exert different effects. Basolaterally released GLP-1 increases epithelial ion transport by activating CGRP-containing enteric afferent neurons. Although bath-applied GLP-1 reduced the contractility of colonic segments, GLP-1-induced stimulation of afferent neurons could also accelerate peristaltic contractions. Here, the roles of endogenous GLP-1 in regulating colonic peristalsis were investigated using isolated colonic segments. Isolated segments of rat proximal colon were placed in an organ bath, serosally perfused with oxygenated physiological salt solution, and luminally perfused with degassed 0.9% saline. Colonic wall motion was recorded using a video camera and converted into spatiotemporal maps. Intraluminal administration of GLP-1 (100 nM) stimulating the secretion of GLP-1 from L cells increased the frequency of oro-aboral propagating peristaltic contractions. The acceleratory effect of GLP-1 was blocked by luminally applied exendin-3 (9-39) (100 nM), a GLP-1 receptor antagonist. GLP-1-induced acceleration of peristaltic contractions was also prevented by bath-applied BIBN4069 (1 µM), a CGRP receptor antagonist. In colonic segments that had been exposed to bath-applied capsaicin (100 nM) that desensitizes extrinsic afferents, GLP-1 was still capable of exerting its prokinetic effect. Stimulation of endogenous GLP-1 secretion with a luminally applied cocktail of short-chain fatty acids (1 mM) increased the frequency of peristaltic waves in an exendin-3 (9-39)-sensitive manner. Thus, GLP-1 activates CGRP-expressing intrinsic afferents to accelerate peristalsis in the proximal colon. Short-chain fatty acids appear to stimulate endogenous GLP-1 secretion from L cells resulting in the acceleration of colonic peristalsis.NEW & NOTEWORTHY Glucagon-like peptide-1 (GLP-1) activates CGRP-containing intrinsic afferent neurons resulting in the acceleration of colonic peristalsis. Short-chain fatty acids stimulate the secretion of endogenous GLP-1 from L cells that accelerates colonic peristalsis. Thus, besides the well-known humoral insulinotropic action, GLP-1 exerts a local action via the activation of the enteric nervous system to accelerate colonic motility. Such a prokinetic action of GLP-1 could underlie the mechanisms causing diarrhea in patients with type-2 diabetes treated with GLP-1 analogs.


Assuntos
Colo/metabolismo , Células Enteroendócrinas/metabolismo , Motilidade Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colo/efeitos dos fármacos , Colo/inervação , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Ácidos Graxos/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Técnicas In Vitro , Masculino , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Ratos Wistar
15.
Cell Tissue Res ; 386(3): 513-531, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34604930

RESUMO

Neurally released nitric oxide (NO) functions as an inhibitory neurotransmitter of urethral but not detrusor smooth muscles while relaxing bladder vasculature and muscularis mucosae (MM). Here, the distribution of nitrergic nerves was examined in the mucosa of pig lower urinary tract using immunohistochemistry, and their vasodilatory functions were studied by measuring arteriolar diameter changes. Properties of smooth muscle cells in the lamina propria (SMC-LP) of urethra and trigone were also investigated using florescence Ca2+ imaging. In the bladder mucosa, neuronal nitric oxide synthase (nNOS)-immunoreactive nitrergic fibres projected to suburothelial arterioles and venules. Perivascular nitrergic nerves were intermingled with but distinct from tyrosine hydroxylase (TH)-immunoreactive sympathetic or calcitonin gene-related peptide (CGRP)-immunoreactive afferent nerves. MM receive a nitrergic but not sympathetic or afferent innervation. In the mucosa of urethra and trigone, nitrergic nerves were in close apposition with sympathetic or afferent nerves around suburothelial vasculature but did not project to SMC-LP. In suburothelial arterioles of bladder and urethra, N ω-nitro-L-arginine (L-NA, 100 µM), an NOS inhibitor, enhanced electrical field stimulation (EFS)-induced sympathetic vasoconstrictions, while tadalafil (10 nM), a phosphodiesterase type 5 (PDE5) inhibitor, suppressed the vasoconstrictions. SMC-LP developed asynchronous spontaneous Ca2+ transients without responding to EFS. The spontaneous Ca2+ transients were enhanced by acetylcholine (1 µM) and diminished by noradrenaline (1 µM) but not SIN-1 (10 µM), an NO donor. In the lower urinary tract mucosa, perivascular nitrergic nerves appear to counteract the sympathetic vasoconstriction to maintain the mucosal circulation. Bladder MM but not SMC-LP receive an inhibitory nitrergic innervation.


Assuntos
Músculo Liso/fisiologia , Óxido Nítrico/metabolismo , Sistema Urinário/inervação , Animais , Masculino , Suínos
16.
Pflugers Arch ; 473(12): 1925-1938, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34596752

RESUMO

Here we investigate mechanisms underlying spontaneous phasic contractions (SPCs) and sympathetic control of contractility in the rat epididymis, a long tubular duct involved in transportation and maturation of sperm. Longitudinal contractions of short segments (~ 1.5 mm) of rat proximal and distal caudal epididymal duct were measured + / - nerve stimulation. The extent of sympathetic innervation of these duct regions was determined by immunohistochemistry. Proximal caudal duct segments (150-300 µm dia.) exhibited SPCs, while distal segments (350-500 µm) were quiescent in ~ 80% of preparations. SPC amplitude and frequency were reduced by the L-type voltage-dependent Ca2+ channel (LVDCC) blocker nifedipine (1 µM), with the T-type voltage-dependent Ca2+ channel (TVDCC) blocker ML218 (1 µM) specifically decreasing SPC frequency. SPCs were inhibited upon blockade of the SR/ER Ca2+-ATPase (CPA 10 µM). SPCs were also inhibited by caffeine (1 µM), 2-APB (100 µM), niflumic acid (100 µM), or by lowering extracellular [Cl-] from 134.4 to 12.4 mM but not by ryanodine (25 µM) or tetracaine (100 µM). Electrical field stimulation (EFS) at 2 Hz for 60 s caused a sustained α1-adrenoceptor-sensitive contraction in distal segments and enhanced and/or induced α2-adrenoceptor-sensitive oscillatory phasic contractions in proximal and distal segments, the latter mimicked by application of the α2-adrenoceptor agonist clonidine. We hypothesise that SPCs in the proximal cauda are triggered by pacemaker mechanisms involving rhythmic IP3 receptor-operated SR/ER store Ca2+ release and resultant activation of CaCC with TVDCCs and possibly LVDCCs subserving in this process. Sympathetic nerve-released noradrenaline induces α2-adrenoceptor-mediated phasic contractions in the proximal and distal cauda. These findings provide new pharmacological targets for male infertility and contraception.


Assuntos
Epididimo/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Nifedipino/farmacologia , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Rianodina/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
17.
Neurogastroenterol Motil ; 33(9): e14127, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33939231

RESUMO

BACKGROUND: Constipation is commonly seen in patients with Parkinson's disease associated with a loss of dopaminergic neurons in both central and enteric nervous systems. However, the roles of enteric dopaminergic neurons in developing constipation remain to be elucidated. Here, we investigated the roles of enteric dopaminergic neurons in the generation of colonic peristalsis. METHODS: Cannulated segments of rat proximal colon were situated in the organ bath, abluminally perfused with physiological salt solution and luminally perfused with 0.9% saline. Drugs were applied in the abluminal solution. Changes in diameter along the length of the colonic segment were captured by a video camera and transformed into spatio-temporal maps. Fluorescence immunohistochemistry was also carried out. KEY RESULTS: Blockade of nitrergic neurotransmission prevented oro-aboral propagation of peristaltic waves and caused a colonic constriction without affecting ripples, non-propagating myogenic contractions. Blockade of cholinergic neurotransmission also prevented peristaltic waves but suppressed ripples with a colonic dilatation. Tetrodotoxin (0.6 µM) abolished peristaltic waves and increased ripples with a constriction. SCH 23390 (20 µM), a D1 -like dopamine receptor antagonist, slowed the peristaltic waves and caused a constriction, while GBR 12909 (1 µM), a dopamine reuptake inhibitor, diminished the peristaltic waves with a dilatation. Bath-applied dopamine (3 µM) abolished the peristaltic waves associated with a colonic dilation in an SCH 23390 (5 µM)-sensitive manner. D1 receptor immunoreactivity was co-localized to nitrergic and cholinergic neurons. CONCLUSIONS AND INFERENCES: Dopaminergic neurons appear to facilitate nitrergic neurons via D1 -like receptors to stabilize asynchronous contractile activity resulting in the generation of colonic peristalsis.


Assuntos
Colo/fisiologia , Neurônios Dopaminérgicos/fisiologia , Sistema Nervoso Entérico/fisiologia , Peristaltismo/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Masculino , Neurônios Nitrérgicos/fisiologia , Ratos , Ratos Wistar
18.
Neurourol Urodyn ; 40(1): 102-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33074588

RESUMO

To explore contractile actions of angiotensin II (ATII) on the muscularis mucosae (MM) of the bladder, ATII-induced contractions were compared between MM and the detrusor smooth muscle (DSM) of the pig bladder by isometric tension recordings. Effects of ATII on spontaneous Ca2+ transients in MM were visualized using Cal-520 fluorescence. ATII receptor type 1 (ATR1) expression in MM and DSM was also examined by immunohistochemistry. ATII (1 nM-1 µM) caused phasic contractions of MM in a concentration-dependent manner, while ATII (10 nM-10 µM) had no or marginal effects on DSM contractility. ATII (100 nM)-induced MM contractions had an amplitude of approximately 70% of carbachol (1 µM)-induced or 90% of U46619 (100 nM)-induced contractions. Candesartan (10 nM), an ATR1 blocker, prevented the contractile effects of ATII (1 nM) in MM, while ATR1 immunofluorescence was greater in MM than DSM. ATII (10-100 pM) increased the frequency but not the amplitude of spontaneous Ca2+ transients in MM. Both urothelium-intact and -denuded MM strips developed comparable spontaneous phasic contractions, but ATII, carbachol and U46619-induced contractions were significantly larger in urothelium-denuded than urothelium-intact MM strips. In conclusion, the MM appears to have a much greater sensitivity to ATII compared with DSM that could well sense circulating ATII, suggesting that MM may be the predominant target of contractile actions induced by ATII in the bladder while the urothelium appears to inhibit MM contractility.


Assuntos
Angiotensina II/uso terapêutico , Mucosa/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Suínos
19.
Br J Pharmacol ; 178(5): 1073-1094, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314051

RESUMO

BACKGROUND AND PURPOSE: While the bladder vasculature is considered as a target of PDE5 inhibitors to improve bladder storage dysfunctions, its characteristics are largely unknown. Thus, the functional and morphological properties of arteries/arterioles of the bladder focusing on the NO-mediated signal transmission were explored. EXPERIMENTAL APPROACH: Diameter changes in rat bladder arteries/arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in pericytes or smooth muscle cells (SMCs) of suburothelial arterioles were visualised using transgenic mice expressing GCaMP6 under control of the NG2- or parvalbumin-promoter. The perivascular innervation was investigated using fluorescence immunohistochemistry. KEY RESULTS: In rat suburothelial arterioles and vesical arteries, tadalafil (100 nM) attenuated nerve-evoked sympathetic vasoconstrictions. In both vascular segments, tadalafil-induced inhibition of sympathetic vasoconstriction was prevented by N ω-propyl-l-arginine hydrochloride (l-NPA, 1 µM), an nNOS inhibitor or N ω-nitro-l-arginine (l-NA, 100 µM). Both vascular segments were densely innervated with nNOS-positive nitrergic nerves in close apposition to tyrosine hydroxylase-immunoreactive sympathetic nerves. In pericyte-covered pre-capillary arterioles of the mouse bladder where sympathetic nerves were absent, nerve stimulation evoked transient reductions in pericyte Ca2+ levels that were shortened by l-NPA and abolished by l-NA. In SMC-containing arterioles, tadalafil (10 nM) caused a l-NPA-sensitive suppression of sympathetic Ca2+ transients. In mice, nitrergic perivascular nerves were distributed in the arterioles and the pre-capillary arterioles. CONCLUSION AND IMPLICATIONS: Both nitrergic nerve and nerve-evoked endothelial NO release appear to be involved in vasodilatory signal transmission in bladder vasculature. The NO-mediated signal transmission is a potential target for PDE5 inhibitor therapy in bladder dysfunctions.


Assuntos
Inibidores da Fosfodiesterase 5 , Bexiga Urinária , Animais , Arteríolas , Camundongos , Ratos , Roedores , Vasoconstrição
20.
Neurourol Urodyn ; 39(6): 1667-1678, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531084

RESUMO

AIMS: As PDGFRα (+) cells appear not to suppress the excitability of detrusor smooth muscle by generating SK3-dependent hyperpolarising as proposed in the gastrointestinal tract, we further explored the functional roles of PDGFRα (+) cells in regulating the spontaneous activity of urogenital tissues. METHODS: Using PDGFRα-eGFP mice, intracellular Ca2+ signaling in PDGFRα (+) cells of the bladder lamina propria, renal pelvis, and seminal vesicle were visualized using Cal-590 fluorescence. The distribution and SK3 expression of PDGFRα (+) cells were also examined by immunohistochemistry. RESULTS: In the bladder lamina propria, SK3 (-) PDGFRα (+) cells exhibited spontaneous Ca2+ transients and responded to stimulation of P2Y1 purinoceptors with MRS2365 (100 nM) or adenosine diphosphate (ADP) (100 µM) by developing Ca2+ transients. In the proximal renal pelvis, PDGFRα (+) cells were distributed in the mucosal, muscular and serosal layers but did not express SK3 immunoreactivity. PDGFRα (+) cells in the musculature resembling atypical smooth muscle cells generated spontaneous Ca2+ transients that were partially suppressed upon P2Y1-stimulation, while vigorously responding to human angiotensin II (100 nM). In the seminal vesicle, PDGFRα (+) cells in the musculature but not mucosa expressed SK3 immunoreactivity. In the mucosa, the P2Y1 stimulation evoked Ca2+ transients in both PDGFRα (+) cells and PDGFRα (-) cells. CONCLUSION: PDGFRα (+) cells in spontaneously active urogenital tissues display heterogeneity in terms of their SK3 expression and P2Y1-induced Ca2+ responses. Muscular PDGFRα (+) cells in the renal pelvis and mucosal PDGFRα (+) cells in the seminal vesicle may generate depolarizing signals to drive smooth muscle cells.


Assuntos
Músculo Liso/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Bexiga Urinária/metabolismo , Difosfato de Adenosina/análogos & derivados , Animais , Masculino , Camundongos , Camundongos Transgênicos , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Bexiga Urinária/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...